Schneier on Security eBook

$12.00

  • Delivery: Can be download immediately after purchasing. For new customer, we need process for verification from 30 mins to 24 hours.
  • Version: PDF/EPUB. If you need another version, please Contact us
  • Quality: Full page, full content, high quality images, searchable text and you can print it.
  • Compatible Devices: Can be read on any devices (Kindle, NOOK, Android/IOS devices, Windows, MAC,..).
  • e-Book Features: Purchase and read your book immediately, access your eTextbook anytime and anywhere, unlimited download and share with friends.
  • Note: If you do not receive the download link within 15 minutes of your purchase, please Contact us. Thank you!

The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm

Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented.

While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include:

  • New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm

  • New results on convergence, including convergence of the EM algorithm in constrained parameter spaces

  • Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation

  • Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space

  • Exploration of the EM algorithm’s relationship with the Gibbs sampler and other Markov chain Monte Carlo methods

  • Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site

The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.

Reviews

There are no reviews yet.

Be the first to review “Schneier on Security eBook”

Your email address will not be published. Required fields are marked *